澳门六合彩历史记录

鈥楶lacenta-on-a-chip鈥 Mimics Nutrient Exchange between Mother-Fetus

Malaria, Placenta, Microfluidics, Mother-Fetus, Nutrient Exchange, Infectious Diseases, Microbiology, Engineering, Technology, 3D Model, Pathologies, Placenta-related Diseases, Blood Circulation, Testing, Screening

Sarah E. Du, Ph.D., senior author and an associate professor in 澳门六合彩历史记录鈥檚 Department of Ocean and Mechanical Engineering. (Photo by Alex Dolce)


By gisele galoustian | 9/26/2022

Placental malaria as a consequence of Plasmodium falciparum聽infections can lead to severe complications for both mother and child. Each year, placental malaria causes nearly 200,000 newborn deaths, mainly due to low birth weight, as well as 10,000 maternal deaths. Placental malaria results from parasite-infected red blood cells that get stuck within tree-like branch structures that make up the placenta.聽

Research on human placenta is experimentally challenging due to ethical considerations and inaccessibility of the living organs. The anatomy of the human placenta and architecture of maternal鈥揻etal interface, such as between maternal and fetal blood, are complex and cannot be easily reconstructed in their entirety using modern in vitro models.

Researchers from 澳门六合彩历史记录鈥檚 College of Engineering and Computer Science and have developed a placenta-on-a-chip model that mimics the nutrient exchange between the fetus and mother under the influence of placental malaria. Combining microbiology with engineering technologies, this novel 3D model uses a single microfluidic chip to study the complicated processes that take place in malaria-infected placenta as well as other placenta-related diseases and pathologies.

Placenta-on-a-chip simulates blood flow聽and mimics the聽microenvironment of the malaria-infected placenta in this flow condition. Using this method, researchers closely examine the process that takes place as the infected red blood cells interact with the placental vasculature. This microdevice enables them to measure the glucose diffusion across the modeled placental barrier and the effects of blood infected with a P. falciparum聽line that can adhere to the surface of placenta using placenta-expressed molecule called CSA.

For the study, trophoblasts or outer layer cells of the placenta and human umbilical vein endothelial cells were cultured on the opposite sides of an extracellular matrix gel in a compartmental microfluidic system, forming a physiological barrier between the co-flow tubular structure to mimic a simplified maternal鈥揻etal interface in placental villi.

Results, published in , demonstrated that CSA-binding infected erythrocytes added resistance to the simulated placental barrier for glucose perfusion and decreased the glucose transfer across this barrier. The comparison between the glucose transport rate across the placental barrier in conditions when uninfected or聽P. falciparum聽infected blood flows on outer layer cells helps to better understand this important aspect of placental malaria pathology and could potentially be used as a model to study ways to treat placental malaria.

鈥淒espite advances in biosensing and live cell imaging, interpreting transport across the placental barrier remains challenging. This is because placental nutrient transport is a complex problem that involves multiple cell types, multi-layer structures, as well as coupling between cell consumption and diffusion across the placental barrier,鈥 said Sarah E. Du, Ph.D., senior author and an associate professor in 澳门六合彩历史记录鈥檚 Department of Ocean and Mechanical Engineering. 鈥淥ur technology supports formation of microengineered placental barriers and mimics blood circulations, which provides alternative approaches for testing and screening.鈥 聽

Most of the molecular exchange between maternal and fetal blood occurs in the branching tree-like structures called villous trees. Because placental malaria may start only after the beginning of second trimester when intervillous space opens to infected red blood cells and white blood cells, the researchers were interested in the placental model of maternal鈥揻etal interface formed in the second half of pregnancy.

鈥淭his study provides vital information on the exchange of nutrients between mother and fetus affected by聽malaria,鈥 said Stella Batalama, Ph.D., dean, 澳门六合彩历史记录 College of Engineering and Computer Science. 鈥淪tudying the molecular transport between maternal and fetal compartments may help to understand some of the pathophysiological mechanisms in placental malaria. Importantly, this novel microfluidic device developed by our researchers at 澳门六合彩历史记录 could serve as a model for other placenta-relevant diseases.鈥

Study co-authors are Babak Mosavati, Ph.D., a recent graduate in 澳门六合彩历史记录鈥檚 College of Engineering and Computer Science; and , Ph.D., a professor of biomedical science, 澳门六合彩历史记录 Schmidt College of Medicine.

The research was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the National Institute of Allergy and Infectious Diseases, and the National Science Foundation.聽

-澳门六合彩历史记录-